Аминокислоты

Что такое аминокислотно-заместительная терапия?

Аминокислотно-заместительная терапия (АЗТ) – метод, набирающий в последнее время популярность в дерматокосметологии. Напрямую к этому виду терапии относится введение аминокислотного состава в средние слои кожи. Косвенно функцию аминокислотно-заместительной терапии берет на себя методика плазмотерапии (PRP).

Цель? Синтез вожделенного коллагена. В последнее время из всех информационных источников звучат призывы насинтезировать новый коллаген, в ход идут как методы тяжелой артиллерии, читай, высокотехнологичные аппараты с клинически доказанной эффективностью, так и различные снадобья, «продавцы молодости» не стесняются маркетинговых ходов из серии «Данная сыворотка увеличивает синтез коллагена на миллиард процентов»…

Как врачу-косметологу и его пациенту разобраться, где заканчивается мечта и начинается реальность? Ответ – изучать научные статьи.

Основные группы аминокислот — заменимые и незаменимые

Известных в природе аминокислот обнаружено более двух десятков. Большинство растений и бактерий способны из обычных неорганических соединений синтезировать все аминокислоты, необходимые для их жизнедеятельности.

В теле человека и животных большая часть аминокислот синтезируется из органических продуктов, и из усваиваемого азота. Такие аминокислоты называют «заменимыми». Ряд необходимых организму человека для его нормальной жизнедеятельности аминокислот в организме человека не синтезируется. Их называют «незаменимыми» аминокислотами.

Такие аминокислоты должны поступать в организм человека в составе пищи. Белки в организме синтезируются непрерывно, но в случае отсутствия хотя бы одной из незаменимых аминокислот процесс синтеза останавливается. Если незаменимых аминокислот в организме нет или их слишком мало, может остановиться рост, снизится масса, возникнут нарушения обмена веществ, а при острой недостаточности организм может погибнуть.

Количество необходимых незаменимых аминокислот для организма зависит от возраста и пола человека, от его профессии и других обстоятельств. Взрослый человек должен потреблять в сутки примерно около одного грамма каждой из незаменимых аминокислот. В организм незаменимые аминокислоты попадают с пищей, и их количество зависит от того, сколько их содержится в съедаемых белках

Эти параметры необходимо принимать во внимание при организации правильного процесса питания и при составлении оптимальных рационов для разных групп населения по возрасту и по профессиям. Необходимые человеку аминокислоты из пищи могут быть полностью заменены смесью аминокислот, что часто практикуется при организации лечебного питания

Рассматривая «заменимость» и «незаменимость» аминокислот, надо постоянно помнить о том, что все два десятка их имеют биологическую значимость и являются жизненно важными.

Незаменимые аминокислоты

Аминокислоты, которые необходимо ежедневно получать при потреблении пищи, организмом НЕ синтезируются:

  • изолейцин, необходимый для мышц;
  • лейцин, обеспечивающий заживление ран;
  • валин, усиливающий мышцы;
  • гистидин, отвечающий за избавление от аллергии;
  • лизин, предохраняющий от простуд;
  • метионин, поддерживающий работу печени;
  • фенилаланин, обеспечивающий хорошее настроение;
  • треонин, отвечающий за релаксацию мышц;
  • триптофан, препятствующий депрессиям и бессоннице.

Условно заменимые аминокислоты

Данный список аминокислот организм может синтезировать из других аминокислот:

  • аргинин, обеспечивающий мужскую половую функцию и деторождение;
  • цистеин, исполняющий роль антиоксиданта;
  • тирозин — хороший антидепрессант;
  • карнитин, генерирующий энергию;
  • глутатион, являющийся антиоксидантом;
  • гомоцистин, передозировка которого опасна.

Заменимые аминокислоты

Эти аминокислоты синтезируются самим организмом:

  • аланин, являющийся источником энергии;
  • аспарагиновая кислота, улучшающая усвоение минералов;
  • цистин, защищающий и очищающий клетки;
  • глутаминовая кислота, снижающая влечение к алкоголю и сладким блюдам;
  • глутамин;
  • глицин, заживляющий раны;
  • орнитин, необходимый для мышц;
  • пролин, лечащий травмы;
  • серин, обновляющий клетки;
  • таурин, необходимый для оздоровления нервов и сердца.

Общая характеристика

Аминокислоты – это обычно кристаллические вещества со сладким привкусом, получить которые возможно в процессе гидролиза протеинов или в результате определенных химических реакций. Эти твердые водорастворимые вещества-кристаллы характеризуются очень высокой температурой плавления – примерно 200-300 градусов по Цельсию. Основными химическими элементами аминокислот являются углерод, азот,водород, кислород.

Хоть в названии этих веществ и присутствует слово «кислота», их свойства скорее напоминают соли, хотя по специфике строения молекулы могут обладать кислотными и основными способностями одновременно. А значит – одинаково эффективно воздействовать с кислотами и щелочами.

Большинство аминокислот бывают двух видов: L-изомеры и D-изомеры.

Первые характеризуются оптической активностью и встречаются в природе. Аминокислоты этой формы важны для здоровья организма. D-вещества встречаются в бактериях, играют роль нейромедиаторов в организмах некоторых млекопитающих.

В природе существует 500 так называемых стандартных, протеиногенных аминокислот. 20 из них собственно и составляют полипептидную цепь, содержащую генетический код. В последние годы в науке заговорили о необходимости расширения аминокислотной «семьи», и некоторые исследователи дополняют этот список еще 2 веществами – селеноцистеином и пирролизином.

Номенклатура аминокислот

Углеродная цепочка (скелет) может состоять как из 1 атома углерода, так и из нескольких. В последнем случае имеет значение, к какому атому углерода, начиная счет от карбоксильной группы, присоединится аминная голова. Это может быть как 1-ый атом углерода, так и 2-ой, 3-ий и далее. Химики договорились обозначать атомы углерода не цифрами, а буквами греческого алфавита: α – 1-ый атом углерода, начиная с карбоксильного хвоста, β— 2-ой, γ — 3-й, и т.д.

Если аминогруппа присоединяется к углероду в α-положении, такую аминокислоту называют α-аминокислотой, соответственно, если аминогруппа присоединена в β-положении — то это β-аминокислота, если в γ — то γ -аминокислота.

Из β — аминокислот наиболее известен β-аланин, а из γ-аминокислот наиболее известна γ-аминомасляная кислота (ГАМК). Их структурные формулы приведены ниже.

Значение незаменимых аминокислот для организма (yaads = window.yaads || []).push({ id: «407385-36», render: «#id-407385-36» });

1. Незаменимые аминокислоты в организме для потери веса

Аминокислоты способствуют снижению веса, увеличивая потерю жира и сохраняя мышечную массу. В частности, было показано, что добавление незаменимых аминокислот с разветвленной цепью особенно эффективно, когда речь идет о потере веса.

Впечатляет исследование, опубликованное в Журнале Международного общества спортивного питания. Употребление добавок с аминокислотами с разветвленной цепью (BCAA) во время восьминедельной программы тренировок приводило к значительному увеличению мышечной массы. А также к увеличению силы и большему снижению процента жира в организме, чем употребление добавки сывороточного протеина или спортивного напитка. Однако другие исследования показали неоднозначные результаты, что указывает на необходимость проведения дополнительных исследований в будущем.

2. Незаменимые аминокислоты в организме для мышечной массы

Как основные строительные блоки мышечной ткани, аминокислоты чрезвычайно необходимы для поддержания мышц и их роста. Кроме того, некоторые исследования показали, что добавление незаменимых аминокислот в организм может помочь предотвратить потерю мышечной массы. Это является распространенным побочным эффектом, возникающим как при старении, так и при потере веса.

Например, исследование 2010 года, опубликованное в журнале Clinical Nutrition, показало, что добавление незаменимых аминокислот помогает улучшить функцию мышц. Особенно это касается пожилых людей, соблюдающих постельный режим. А исследования, проведенные в Южной Каролине, показали, что добавки с незаменимыми аминокислотами эффективны для сохранения мышечной массы и способствуют похудению у спортсменов.

3. Незаменимые аминокислоты в организме для улучшения производительности тренировки

Являетесь ли Вы случайным посетителем тренажерного зала или спортсменом, незаменимые аминокислоты для организма необходимы. Особенно если Вы хотите вывести свою тренировку на новый уровень. Фактически, незаменимые аминокислоты в организме, такие как лейцин, валин и изолейцин, обычно используются для содействия восстановлению мышц. А также предотвращения болезненности и борьбы с усталостью в рамках здорового питания после тренировки.

Один большой обзор восьми исследований показал, что добавки с BCAA были способны уменьшить боль в мышцах и улучшить мышечную функцию после интенсивных тренировок. Другое исследование показало, что ежедневный прием 4-х граммов лейцина повышает силу у мужчин во время 12-недельной программы тренировок с отягощениями.

4. Незаменимые аминокислоты в организме для повышения настроения

Триптофан является незаменимой аминокислотой, которая играет ключевую роль в регулировании настроения и поддержании психического здоровья. Он используется организмом для синтеза серотонина, нейромедиатора, который, как считается, влияет на настроение

Дисбаланс в этом важном нейромедиаторе может также способствовать возникновению серьезных проблем, таких как депрессия, обсессивно-компульсивное расстройство. А также беспокойство, посттравматическое стрессовое расстройство и даже эпилепсия

Исследование 2015 года, опубликованное в Британском журнале питания, сообщило, что хроническое лечение триптофаном благотворно влияет на когнитивные и эмоциональные функции. А также способно усилить чувство счастья. Между тем, другие исследования также обнаружили, что триптофан может помочь в лечении симптомов депрессии и облегчить беспокойство.

5. Незаменимые аминокислоты в организме способствуют лучшему сну

Некоторые данные свидетельствуют о том, что триптофан может также помочь улучшить качество сна и побороть бессонницу. Это связано с его способностью увеличивать уровень серотонина, который участвует в цикле сна.

В большом обзоре, опубликованном в журнале «Доказательная комплементарная и альтернативная медицина», отмечается, что имеются доказательства, подтверждающие способность триптофана, замедлять сон.  Хотя эти исследования все еще неоднозначны. В отличие от многих безрецептурных снотворных, триптофан также хорошо переносится и связан с минимальными побочными эффектами. Это делает его отличным природным средством, способствующим улучшению сна.

Общая характеристика

Аминокислоты – это обычно кристаллические вещества со сладким привкусом, получить которые возможно в процессе гидролиза протеинов или в результате определенных химических реакций. Эти твердые водорастворимые вещества-кристаллы характеризуются очень высокой температурой плавления – примерно 200-300 градусов по Цельсию. Основными химическими элементами аминокислот являются углерод, азот,водород, кислород.

Хоть в названии этих веществ и присутствует слово «кислота», их свойства скорее напоминают соли, хотя по специфике строения молекулы могут обладать кислотными и основными способностями одновременно. А значит – одинаково эффективно воздействовать с кислотами и щелочами.

Большинство аминокислот бывают двух видов: L-изомеры и D-изомеры.

Первые характеризуются оптической активностью и встречаются в природе. Аминокислоты этой формы важны для здоровья организма. D-вещества встречаются в бактериях, играют роль нейромедиаторов в организмах некоторых млекопитающих.

В природе существует 500 так называемых стандартных, протеиногенных аминокислот. 20 из них собственно и составляют полипептидную цепь, содержащую генетический код. В последние годы в науке заговорили о необходимости расширения аминокислотной «семьи», и некоторые исследователи дополняют этот список еще 2 веществами – селеноцистеином и пирролизином.

Кому и зачем нужны

Придерживаясь обещания говорить просто о сложном, не буду перечислять какое большое количество аминокислот существует и за какие важные для организма функции каждая из них отвечает.

Информацию о значимости этой армии можно обобщить и сказать, что она участвует в синтезе белка — главного строительного материала организма, отвечает за выделение энергии, производство гормонов и ферментов, влияет на работу нервной системы, на жировой обмен, иммунитет и красоту.

Даже обобщенное представление убедительно говорит о значимости обсуждаемых нами веществ. Теперь осталось понять, откуда они берутся в организме человека. Для этого обратимся к научной классификации. Для нашей цели интересна та, которая делит органические соединения на два вида:

  1. Заменимые, которые организм способен воспроизвести сам.
  2. Незаменимые, которые не синтезируются в организме.

Вторую группу человек может получить только из пищи, поэтому важно обогащать ежедневный рацион продуктами, в которых содержится достаточное количество незаменимых аминокислот

Относительный аминокислотный состав источников белка

Продукты питания с низким содержанием незаменимых аминокислот являются плохими источниками белковых эквивалентов, поскольку организм имеет тенденцию дезаминировать полученные аминокислоты, превращая белки в жиры и углеводы . Следовательно, для высокой степени использования чистого белка необходим баланс незаменимых аминокислот , который представляет собой массовое отношение аминокислот, превращенных в белки, к поставляемым аминокислотам.

Полноценные белки содержат сбалансированный набор незаменимых для человека аминокислот. Цельные продукты растительного и природного происхождения содержат все незаменимые аминокислоты. Почти полные белки также содержатся в некоторых растительных источниках, таких как киноа .

На чистое использование белка сильно влияет ограничивающее содержание аминокислот (незаменимая аминокислота, содержащаяся в наименьшем количестве в продуктах питания), и в некоторой степени на него влияет сохранение незаменимых аминокислот в организме. Поэтому рекомендуется смешивать продукты с разными недостатками в распределении незаменимых аминокислот. Это ограничивает потерю азота из-за дезаминирования и увеличивает общее чистое использование белка.

Источник белка Ограничивающая аминокислота
Пшеница лизин
Рис лизин
Кукуруза лизин и триптофан
Бобовые пара метионин / цистеин и триптофан
Яйцо , курица, молоко никто; яйцо является эталоном для полноценного белка

Профиль распределения аминокислот в растительной пище менее оптимален, чем в животной пище. но нет необходимости употреблять растительную пищу, содержащую полноценные белки, если соблюдается разумно разнообразная диета. Многочисленные пары различных растительных продуктов могут обеспечить полный профиль белка. Некоторые традиционные комбинации продуктов, такие как кукуруза и бобы или бобы и рис, содержат незаменимые аминокислоты, необходимые для человека, в достаточных количествах. Официальная позиция Академии питания и диетологии заключается в том, что белок из соответствующей запланированной комбинации разнообразных растительных продуктов, потребляемых в течение дня, может быть адекватным с точки зрения питательности при соблюдении потребности в калориях.

Качество протеина

Были предприняты различные попытки выразить «качество» или «ценность» различных видов белка. Меры включают биологическую ценность , чистое использование белка , коэффициент эффективности белка , белки усвояемость-скорректированные аминокислоты оценки и полноценные белки концепции . Эти концепции важны в животноводстве , поскольку относительный недостаток одной или нескольких незаменимых аминокислот в кормах для животных будет иметь ограничивающий эффект на рост и, следовательно, на коэффициент конверсии корма . Таким образом, различные корма можно скармливать в комбинации для увеличения чистого использования белка, или в корм можно добавлять добавку отдельной аминокислоты (метионина, лизина, треонина или триптофана).

Белок на калорию

Содержание протеина в продуктах питания часто измеряется в протеине на порцию, а не в протеине на калорию. Например, Министерство сельского хозяйства США указывает 6 граммов белка на большое цельное яйцо (50-граммовая порция), а не 84 мг белка на калорию (всего 71 калория). Для сравнения: в порции сырой брокколи (100 г) содержится 2,8 грамма белка или 82 мг белка на калорию (всего 34 калории), или дневная норма 47,67 г белка после употребления 1690 г сырой брокколи в день. при 574 кал. Яйцо содержит 12,5 г белка на 100 г, но на 4 мг больше белка на калорию, или белок DV после 381 г яйца, что составляет 545 кал

Соотношение незаменимых аминокислот (качество белка) не принимается во внимание, на самом деле нужно было бы съедать более 3 кг брокколи в день, чтобы иметь здоровый белковый профиль, и почти 6 кг, чтобы получить достаточно калорий. Взрослым людям рекомендуется получать от 10 до 35% от своих 2000 калорий в день в виде белка.

Классификация аминокислот

Характерные свойства отдельных Аминокислот определяются боковой цепью, то есть радикалом, стоящим у α-углеродного атома. В зависимости от строения этого радикала аминокислоты подразделяют на алифатические (к ним относится большинство аминокислот), ароматические (фенилаланин и тирозин), гетероциклические (гистидин и триптофан) и иминокислоты (см.), у которых атом азота, стоящий при α-углеродном атоме, соединен с боковой цепью в пирролидиновое кольцо; к ним относятся пролин и оксипролин (см. Пролин).

По числу карбоксильных и аминных групп аминокислоты делят следующим образом.

Моноаминомонокарбоновые аминокислоты содержат одну карбоксильную и одну аминную группы; к ним относится большая часть аминокислот (их рI лежит ок. рН 6).

Моноаминодикарбоновые аминокислоты содержат две карбоксильные и одну аминную группы. Аспарагиновая и глутаминовая кислота (см.) обладают слабокислыми свойствами.

Диаминомонокарбоновые кислоты — аргинин (см.), лизин (см.), гистидин (см.) и орнитин — в водном растворе диссоциируют преимущественно как основания.

По химическому составу замещающих групп различают: оксиаминокислоты (содержат спиртовую группу) — серин и треонин (см.), серосодержащие аминокислоты (содержат в своем составе атомы серы) — цистеин, цистин (см.) и метионин (см.); амиды (см.) дикарбоновых аминокислот — аспарагин (см.) и глутамин (см.) и тому подобное Аминокислоты с углеводородным радикалом, например аланин, лейцин, валин и другие, придают белкам гидрофобные свойства; если радикал содержит гидрофильные группы, как, например, у дикарбоновых аминокислот, они сообщают белку гидрофильность.

Помимо уже упомянутых аминокислот (см. таблицу и соответствующие статьи), в тканях человека, животных, растений и у микроорганизмов найдено еще более 100 аминокислот, многие из которых играют важную роль в живых организмах. Так, орнитин и цитруллин (относятся к диаминокарбоновым аминокислотам) играют важную роль в обмене веществ, в частности в синтезе мочевины у животных (см. Аргинин, Мочевина). В организмах найдены высшие аналоги глутаминовой кислоты: α-аминоадипиновая кислота с б атомами углерода и α-аминопимелиновая кислота с 7 атомами углерода. В составе коллагена и желатина найден оксилизин:

имеющий два асимметрических атома углерода. Из алифатических моноаминомонокарбоновых аминокислот встречаются α-аминомасляная кислота, норвалин (α-аминовалериановая кислота) и норлейцин (α-ампнокапроновая кислота). Последние две получены синтетически, но не встречаются в составе белков. Гомосерин (α-амино-γ-оксимасляная кислота) является высшим аналогом серина. Соответственно α-амино-γ-тиомасляная кислота, или гомоцистеин, является подобным аналогом цистеина. Две последние аминокислоты наряду с лантионином:

[НООС—CH(NH2)—СН2—S-CH2—CH(NH2)—COOH]

и цистатионином:

[НООС—CH(NH2)—CH2—S—СН2—СН2—CH(NH2)—COOH]

принимают участие в обмене серосодержащих аминокислот 2,4-Диоксифенилаланин (ДОФА) является промежуточным продуктом обмена фенилаланина (см.) и тирозина (см.). Из тирозина образуется такая аминокислота, как 3,5-дийодтирозин — промежуточный продукт образования тироксина (см.). В свободном состоянии и в составе некоторых природных веществ встречаются аминокислоты, метилированные (см. Метилирование) по азоту: метилглицин, или саркозин [CH2(NHCH3) COOH], а также метилгистидин, метилтриптофан, метиллизин. Последний недавно обнаружен в составе ядерных белков — гистонов (см.). Описаны также ацетилированные производные аминокислот, в том числе ацетиллизин составе гистонов.

Помимо α-аминокислот в природе, главным образом в свободном виде и в составе некоторых биологически важных пептидов, встречаются Аминокислот, содержащие аминогруппу у других атомов углерода. К ним относятся β-аланин (см. Аланин), γ-аминомасляная кислота (см. Аминомасляные кислоты), играющая важную роль в функционировании нервной системы, δ-аминолевулиновая кислота, являющаяся промежуточным продуктом синтеза порфиринов. К аминокислотам относят также таурин (H2N—CH2—CH2—SO3H), образующийся в организме в процессе обмена цистеина.

Источники[править | править код]

  1. Wolfe RR: Regulation of muscle protein by amino acids. J Nutr 2002, 132(10):3219S-24S.
  2. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR: Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab 2003, 284(1):E76-89.
  3. Biolo G, Williams BD, Fleming RY, Wolfe RR: Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 1999, 48(5):949-57.
  4. Borsheim E, Tipton KD, Wolf SE, Wolfe RR: Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 2002, 283(4):E648-57.
  5. Kobayashi H, Borsheim E, Anthony TG, Traber DL, Badalamenti J, Kimball SR, Jefferson LS, Wolfe RR: Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eIF2B. Am J Physiol Endocrinol Metab. 2003, 284(3):E488-98.
  6. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR: Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 2003, 35(3):449-55.
  7. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR: An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 2000, 88(2):386-92.
  8. Rasmussen BB, Wolfe RR, Volpi E: Oral and intravenously administered amino acids produce similar effects on muscle protein synthesis in the elderly. J Nutr Health Aging 2002, 6(6):358-62.
  9. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 2001, 535(Pt 1):301-11.
  10. Garlick PJ: The role of leucine in the regulation of protein metabolism. J Nutr 2005, 135(6 Suppl):1553S-6S.
  11. ↑ 11,011,1 Garlick PJ, Grant I: Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J 1988, 254(2):579-84.
  12. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, Landis J, Lopez H, Antonio J: International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr 2007, 4:8.
  13. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR: Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab 2003, 284:E76-E89.
  14. Бутенко Л.И., Лигай Л.В. ИССЛЕДОВАНИЯ ХИМИЧЕСКОГО СОСТАВА ПРОРОЩЕННЫХ СЕМЯН ГРЕЧИХИ, ОВСА, ЯЧМЕНЯ И ПШЕНИЦЫ // Фундаментальные исследования. – 2013. – № 4 (часть 5). – стр. 1128-1133; URL: www.rae.ru/fs/?section=content&op=show_article&article_id=10000585 (дата обращения: 12.11.2013)

Роль аминокислот в питании

Человек и животные используют в обмене веществ азот, поступающий с пищей в виде аминокислоты, главным образом в составе белков, некоторых других органических соединений азота, а также аммонийные соли. Из этого азота путем процессов аминирования и трансаминирования (см. Переаминирование) в организме образуются различные аминокислоты. Некоторые аминокислоты не могут синтезироваться в животном организме, и для поддержания жизни эти аминокислоты должны обязательно поступать в организм с пищей. Такие аминокислоты называют незаменимыми. Незаменимые аминокислоты для человека: триптофан (см.), фенилаланин (см.), лизин (см.), треонин (см.), валин (см.), лейцин (см.), метионин (см.) и изолейцин (см.). Остальные аминокислоты относят к заменимым, но некоторые из них заменимы лишь условно. Так, тирозин образуется в организме только из фенилаланина и при поступлении последнего в недостаточном количестве может оказаться незаменимым. Подобно этому цистеин и цистин могут образоваться из метионина, но необходимы при недостатке этой аминокислоты. Аргинин синтезируется в организме, но скорость его синтеза может оказаться недостаточной при повышенной потребности (особенно при активном росте молодого организма). Потребность в незаменимых аминокислот изучалась в исследованиях по азотистому равновесию, белковому голоданию, учету потребляемой пищи и другое. Тем не менее потребность в них не поддается точному учету и может быть оценена лишь приблизительно. В табл. 4 приведены данные о рекомендуемых и безусловно достаточных для человека количествах незаменимых аминокислот. Потребность в незаменимых аминокислот возрастает в периоды интенсивного роста организма, при повышенном распаде белков при некоторых заболеваниях.

Таблица 4. Рекомендуемое и безусловно достаточное для человека количество незаменимых аминокислот (г в сутки)
Аминокислота Рекомендуемое количество Безусловно достаточное количество
L-Валии 0,80 1,60
L-Изолейцин 0,70 1,40
L-Лейцин 1,10 2,20
L-Лизин 0,80 1,60
L-Метионин 1,10 2,20
L-Треонин 0,50 1,00
L-Триптофан 0,25 0,50
L-Фенилалашга 1,10 2,20

Принадлежность аминокислоты к заменимым или незаменимым для различных организмов не совсем одинакова. Так, например, аргинин и гистидин, относящиеся к заменимым аминокислотам для человека, незаменимы для кур, а гистидин также для крыс и мышей. Аутотрофные организмы (см.), к которым относятся растения и многие бактерии, способны синтезировать все необходимые аминокислоты. Однако ряд бактерий нуждается в наличии тех или иных аминокислот в культуральной среде. Известны виды или штаммы бактерий, избирательно нуждающиеся в наличии определенных аминокислот. Такие мутантные штаммы, рост которых обеспечивается только при добавлении в среду определенной кислоты, называют ауксотрофными (см. Ауксотрофные микроорганизмы). Ауксотрофные штаммы растут на среде, полноценной в остальных отношениях, со скоростью, пропорциональной количеству добавленной незаменимой аминокислоты, поэтому их иногда применяют для микробиологического определения содержания данной аминокислоты в тех или иных биологических материалах, например Гатри метод (см.).

Недостаток в питании одной из незаменимых аминокислот приводит к нарушению роста и общей дистрофии, но отсутствие некоторых аминокислот может давать также специфические симптомы. Так, недостаток триптофана нередко дает пеллагроподобные явления, поскольку из триптофана в организме образуется никотиновая кислота (у экспериментальных крыс при недостатке триптофана наблюдается помутнение роговицы, катаракта, выпадение шерсти, анемия); недостаток метионина приводит к поражению печени и почек; недостаток валина вызывает неврологические симптомы и так далее.

Полноценное питание обеспечивается при сбалансированном содержании отдельных аминокислот в пище. Избыток некоторых аминокислот также неблагоприятен. Избыток триптофана приводит к накоплению продукта его обмена — 3-оксиантраниловой кислоты, которая может вызывать опухоли мочевого пузыря. При несбалансированном питании избыток некоторых аминокислот может нарушать обмен или использование других аминокислот и вызывать недостаточность последних.

Выводы

Для того, чтобы организм человека функционировал нормально, очень велика роль аминокислот. Пополнить содержание необходимых аминокислот в организме можно путем использование биологически активных добавок

Очень важно их использовать также при редукционных диетах и при заболеваниях. Такие добавки полезны и тем, кто придерживается вегетарианского образа жизни: они позволяют организму получать те необходимые вещества, которые не содержатся в пище растительного происхождения

Важно также делать свой рацион максимально разнообразным: чем больше видов пищи вы употребляете, тем больше он будет иметь в своем распоряжении необходимых веществ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector