Влияние факторов внешней среды на жизнедеятельность микроорганизмов
Содержание:
Биологические факторы (антимикробные вещества)
Различные вещества, находящиеся в окружающей среде, могут служить источником питания микроорганизмов и способствовать росту и развитию, а могут и ингибировать рост микробной клетки, не оказывая на нее летального действия. Наиболее известными антимикробными веществами являются антибиотики, которые даже в небольших концентрациях угнетают рост и активность микробов. Антибиотики образуют главным образом актиномицеты, а также некоторые грибы и бактерии. Механизм действия антибиотиков состоит в том, что одни из них нарушают процессы деления бактериальной клетки, другие изменяют отдельные процессы метаболизма, мешают использованию витаминов, конкурируют с отдельными ферментами, нарушают процессы дыхания, способствуют образованию перекисей, лизису клеток, оказывают депрессирующее действие на поверхностное натяжение и т. д.
Кислород
Бактерии характеризуются широким спектром требований к содержанию кислорода в их среде разработки. Они могут быть сгруппированы следующим образом:
- Связанные (обязательные) аэробы — микроорганизмы, которые развиваются только в присутствии кислорода. Они получают энергию через аэробное дыхание.
- Микроаэрофилы — низкая концентрация кислорода (от 2% до 10%) требуется для их жизнедеятельности, а ее более высокие концентрации являются тормозящими. Они получают энергию через аэробное дыхание.
- Смешанные анаэробные микроорганизмы — растут только в бескислородных средах и часто умирают в их присутствии. Они деградируют питательные вещества с анаэробной или ферментацией.
- Аэротрольные анаэробы, подобно анаэробным пудингам, не могут использовать кислород для извлечения энергии, но могут выжить в кислородной среде. Они известны как связывающие ферментеры, потому что они используют только процесс ферментации для извлечения энергии из пищи.
- Дополнительные анаэробные микроорганизмы — развиваются в присутствии или в отсутствие кислорода, но обычно более активны в кислородной среде. Они получают свою энергию через аэробное дыхание (в присутствии кислорода), но также используют ферментацию или анаэробное дыхание, в отсутствие этого. Большинство бактерий факультативно анаэробны.
§ 4. Уничтожение микроорганизмов в окружающей среде
Для уничтожения микроорганизмов в окружающей среде применяются стерилизация и дезинфекция.
Стерилизация — это полное освобождение объектов окружающей среды от микроорганизмов и их спор. Существуют физические, химические и механические способы стерилизации.
К наиболее распространенным способам физической стерилизации относятся автоклавирование и сухожаровая стерилизация.
Автоклавирование — это обработка паром под давлением, которая проводится в специальных приборах — автоклавах. Автоклав представляет собой металлический цилиндр с прочными стенками, состоящий из двух камер: парообразующей и стерилизующей. В автоклаве создается повышенное давление, что приводит к увеличению температуры кипения воды. Паром под давлением стерилизуют питательные среды, патологический материал, инструментарий, белье и т.д.
Наиболее распространенный режим работы автоклава — 2 атм., 120°С, 15—20 мин. Началом стерилизации считают момент закипания воды.
К работе с автоклавом допускаются подготовленные специалисты, которые точно и строго выполняют все правила работы с этим прибором.
Сухожаровая стерилизация — проводится в печах Пас-тера. Это шкаф с двойными стенками, изготовленный из металла и асбеста, нагревающийся с помощью электричества и снабженный термометром. Сухим жаром стерилизуют, в основном, лабораторную посуду. Обеззараживание материала в нем происходит при 160°С в течение 1 часа.
<<< Назад | Дальше >>> |
Сушка и звуковые волны
Сушка воздействует на различные микроорганизмы в разной степени. Патогенными микроорганизмами, которые особенно чувствительны к потере внутриклеточной воды, являются гемофильные бактерии, члены рода Nayera (менингококки, гонококки), T. pallidum и другие. Вирусы, подверженные сушке, включают вирусы гриппа и парагриппа, ВИЧ, риновирусы и другие. Устойчив к обезвоживанию — вирионы холеры (до 2 дней), шигеле (до 7 дней) и туберкулезные бактерии (от 3 месяцев до 1 года). Высокая устойчивость к потере внутриклеточной жидкости — это споры бактерий (бациллы сибирской язвы — до 50 лет) и грибы.
Лиофилизация — это процесс, в котором микроорганизмы высушиваются при низких температурах и в вакууме. Процесс включает размещение микробных агентов в защитной жидкости, а затем замораживание со скоростью. От -20 до -70°С и помещают в вакуумную среду в специальном лиофилизированном аппарате. Вакуум вызывает сублимацию воды в микроорганизмах, и они высыхают как антибиотик, но остаются жизнеспособными в течение нескольких лет. Лиофилизация служит для сохранения важных бактериальных и вирусных штаммов, а также для производства живых вакцин.
Только ультразвуковые волны могут влиять на рост и развитие микроорганизмов. Ультразвуковые волны, рассеянные в жидкой среде, вызывают усадку и расширение окружающей среды, что приводит к образованию пузырьков в цитоплазме (кавитация). Эти пузырьки оказывают высокое давление на оболочку клетки, что приводит к разрушению клеток. С другой стороны, ультразвуковая энергия может вызвать ионизацию и диссоциацию молекул воды с образованием реактивных радикалов. Ультразвук используется для механической очистки медицинских и стоматологических инструментов, но не для стерилизации, так как некоторые из микроорганизмов выживают с помощью этого метода.
Влияние температуры на микроорганизмы.
Развитие всех микроорганизмов возможно при определенной температуре. Известны микроорганизмы, способные существовать при низких (-8°С и ниже) и при повышенных температурных условиях, например, обитатели горячих источников поддерживают жизнедеятельность при температуре 80-95°С. Большинство микробов предпочитает температурные пределы 15-35°С. Различают:
- оптимальную, наиболее благоприятную для развития температуру;
- максимальную, при которой прекращается развитие микробов данного вида;
- минимальную, ниже которой микробы прекращают развитие.
По отношению к уровню температуры микроорганизмы разделяют на три группы:
- психрофиты – хорошо растут при пониженных температурах,
- мезофиллы – нормально существуют при средних температурах,
- термофилы – существуют при постоянно высоких температурах.
Группа микроорганизмов |
Температура развития микроорганизмов, ° С |
||
Минимальная |
Оптимальная |
Максимальная |
|
Психрофилы |
0-2 |
15-25 |
25-35 |
Мезофилы |
25-37 |
40-45 |
|
Термофилы |
45-60 |
Микробы сравнительно быстро приспосабливаются к значительным изменениям температуры. Поэтому незначительное снижение или повышение уровня температуры не гарантирует прекращения развития микроорганизмов.
Влияние высоких температур.
Температуры, значительно превышающие максимальные, вызывают гибель микроорганизмов. В воде большинство вегетативных форм бактерий при нагревании до 60°С погибают за час; до 70°С — за 10-15 минут, до 100°С — за несколько секунд. В воздухе гибель микроорганизмов наступает при значительно более высокой температуре — до 170°С и выше в течение 1-2 часов. Споровые формы бактерий значительно устойчивее к нагреванию, они могут выдерживать кипячение в течение 4-5 часов.
Методы пастеризации и стерилизации основаны на свойстве микробов погибать под действием высоких температур. Пастеризация — осуществляется при температуре 60-90°С, при этом погибают вегетативные формы клеток, а споровые остаются жизнеспособными. Поэтому пастеризованные продукты следует быстро охлаждать и хранить в условиях охлаждения. Стерилизация — это полное уничтожение всех форм микроорганизмов, включая споровые. Стерилизацию осуществляют при температуре 110-120°С и повышенном давлении.
Однако споры не погибают мгновенно. Даже при 120°С гибель их наступает через 20-30 минут. Стерилизуют пищевые консервы, некоторые медицинские материалы, субстраты, на которых выращивают микроорганизмы в лабораториях. Эффект стерилизации зависит от количественного и качественного состава микрофлоры объекта стерилизации, его химического состава, консистенции, объема, массы и др.
Влияние низких температур.
Чаще всего действие низких температур связано не с гибелью микроорганизмов, а с торможением и прекращением их развития. Низкую температуру микроорганизмы переносят значительно лучше. Многие болезнетворные микробы, попадающие в окружающую среду, способны переносить суровые зимы, не теряя болезнетворности. Наиболее негативно на развитие микроорганизмов влияет температура, при которой замерзает содержимое клетки.
Тормозящее действие низких температур на микробы используют для хранения различных продуктов в охлажденном виде при температуре 0-4°С, и замороженном – при температуре — 6-20°С и ниже. Действие низких температур в замороженных продуктах усиливает влияние повышенного осмотического давления. Поскольку большая часть воды перешла в лед, в оставшейся жидкой части воды оказались все растворенные вещества, содержавшиеся в массе продукта. Это вызывает повышенное осмотическое давление, которое, в свою очередь, тормозит развитие микробов.
Замораживание используют для хранения мяса, рыбы, плодов, овощей полуфабрикатов, кулинарных изделий, готовых блюд и др. Прекращение развития микробов действует только до тех пор, пока продолжается действие низкой температуры. При повышении температуры начинается бурное развитие и размножение микробов, что вызывает порчу пищевых продуктов.
Следовательно, низкая температура только замедляет биохимические процессы, не имея стерилизующего эффекта. Многократное замораживание одних и тех же продуктов способствует быстрому приспособлению микробов к низким температурам и усиливает их жизнеспособность. Поэтому надо предотвращать колебания температуры во время хранения продуктов.
рН среды и осмотическое давление
Реакция окружающей среды, оптимальная для большинства патогенных микроорганизмов (бактерии и вирусы), является нейтральной или слегка щелочной — pH 7-7,5. Некоторые бактерии, такие как туберкулез, требуют слабокислой среды (рН 6,8), холеры, плесени и дрожжей — щелочных сред (pH 8-9). Изменение реакции среды сильно влияет на метаболическую активность микроорганизмов, которая широко используется в пищевой и фармацевтической промышленности.
Микроорганизмы могут быть отнесены к одной из следующих групп на основе значений рН, необходимых для их оптимального развития:
- Нейтрофилы — лучше развиваются при рН от 5 до 8.
- Ацидофильный — рН 5,5 подходит.
- Алкалифилы — оптимальный рН выше 8,5.
Осмос представляет собой диффузию молекул воды через мембрану из зоны более высокой концентрации воды (меньшая концентрация растворенного вещества) в область с более низкой водной концентрацией или более высокой концентрацией растворенного вещества. Осмотическое давление определяется в основном концентрацией растворенного вещества в данной среде.
Изотоническая среда с определенной концентрацией солей необходима для нормального хода жизни в бактериальных клетках. 0,5% растворы NaCl используются в питательных средах для достижения изотактичности. В океанах и морях микроорганизмы выдерживают значительно более высокие осмотические давления — до 29% NaCl.
Для сохранения пищевых продуктов для предотвращения роста микроорганизмов используются растворы с высоким осмотическим давлением (более 50% сахара или 20% NaCl). Болезни стафилококков (S. aureus) могут выжить в 15% -ной среде NaCl.
Излучние
Излучение, которое повреждает микроорганизмы, представляет собой коротковолновый электромагнитный спектр — ионизирующее излучение и ультрафиолетовые лучи. Их эффект объясняется появлением фотохимических реакций в клетках и молекулярной ионизацией из-за накопления частиц высокой энергии.
Ионизирующее излучение с разрушающим воздействием на микробные агенты включает гамма-лучи, исходящие из Со-60 и Се-137, рентгеновское излучение и корпускулярное излучение (бета-частицы и электроны высокой энергии). Они обладают высокой проникающей способностью, значительной энергией и оказывают прямое и косвенное воздействие. Эффект прямого повреждения достигается при высоких дозах излучения, непосредственно влияющих на бактериальную хромосому, клеточные ферменты, ряд макромолекул с необратимыми изменениями. Косвенный эффект имеет первостепенное значение, так как вода преобладает в клетках. Рентгеновские лучи и гамма-лучи представляют собой высокоэнергетическое излучение, которое может вызывать электрон от атомов, что приводит к ионизации молекул. В результате образуются реакционноспособные свободные радикалы — водород (* H), гидроксил (* OH) и т. д., из которых в клетках образуются окислители, такие как пероксид водорода и пероксид водорода. В свою очередь, они непосредственно повреждают ряд важных макромолекул, наиболее чувствительной ДНК. Декомпозиция макромолекулы ДНК является наиболее распространенной причиной гибели клеток, поскольку она часто содержит только одну копию данного гена. Растительные бактериальные формы, их споры и грибы обычно умирают в дозе около 1,2 Мрад. Несколько вирусов нуждаются в дозе 2,5 Мрад.
Ультрафиолетовое излучение используется как гермицид (микробицид) как в промышленности, так и в медицине более ста лет. Наиболее сильным воздействием на микроорганизмы являются ультрафиолетовые лучи с длиной волны 250-260 нм, что соответствует их максимальному поглощению от оснований молекулы ДНК. Квантовая энергия, переносимая ультрафиолетовыми лучами (UVL), не приводит к ионизации, но инициирует фотохимические реакции. Последний индуцирует ковалентное присоединение соседних оснований тимина в молекуле ДНК, и когда они являются частью двух комплементарных цепей, связывание прекращает репликацию хромосомы, и микробы разрушаются. При более низких дозах ультрафиолетового излучения этот процесс вызывает мутации. Исследование случаев низкодозного облучения (УФЛ) Escherichia coli выявило наличие все большего числа устойчивых к бактериофагу мутантов.
§ 2. Химические факторы
Влияние химических веществ на микроорганизмы различно. Оно зависит от химического соединения, его концентрации, продолжительности воздействия.
В малых концентрациях химическое вещество может являться питанием для бактерий, а в больших — оказывать на них губительное действие. Например, соль NaCl в малых количествах добавляют в питательные среды. Так же существуют галофильные микроорганизмы, которые предпочитают соленую среду. В больших концентрациях NaCl задерживает размножение микроорганизмов. Для примера можно привести консервирование в быту: при недостаточном количестве соли баллоны с овощами могут «взрываться».
Многие химические вещества изспользуются в медицине в качестве дезинфицирующих средств. К ним относятся фенолы, соли тяжелых металлов, кислоты, щелочи. К наиболее распространенным дезрастворам относят хлоросодер-жащие соединения: хлорная известь, хлорамин Б, дихлор-1, сульфохлорантин, хлорцин и др. Активность дезинфицирующих веществ не одинакова и зависит от времени экспозиции, концентрации, температуры. В качестве контрольных микроорганизмов для изучения действия дезрастворов используют S. typhi и S. aureus. Для дезинфекции могут использоваться кислоты: 40% раствор уксусной кислоты для обеззараживания обуви. Виды дезинфекций: профилактическая— для предупреждения и распространения инфекций; текущая — при возникновении эпидемического очага и заключительная — после окончания эпидемической вспышки, (см. схему «Характеристика показаний для дезинфекции»)
Некоторые химические вещества используются в качестве антисептиков. Антисептики — это противомикробные вещества, которые используются для обработки биологических поверхностей. Антисептика — это комплекс мероприятий, направленных на уничтожение микробов в ране или организме в целом, на предупреждение и ликвидацию воспалительного процесса. К антисептикам относятся:
препараты йода (спиртовый раствор йода, йодинол, йодоформ, раствор Люголя);
* соединения тяжелых металлов (соли ртути, серебра, цинка);
* химические вещества нитрофуранового ряда (фуразо-лидон, фурациллин); окислители (перекись водорода, калия перманганат);
* кислоты и их соли (салициловая, борная);
* красители (метиленовый синий, бриллиантовый зеленый).
Характеристика показаний для дезинфекции
Виды дезинфекции
Профилактическая
При возможности или угрозе распространения инфекционных болезней при невыявленном источнике инфекции
— Места скопления люден:
Вокзалы
Гостиницы
Общежития
Общественные туалеты
Парикмахерские
Детские дошкольные учреждения
Бассейны
—^- Лечебные учреждения:
Родильные дома Операционные блоки и др.
Предприятия по изготовлению пищевых продуктов —- Водопроводные станции и сооружения
» Исполнители:
персонал учреждений работники дезинфекционных учреждений
» Время проведения:
периодически
Очаговая
— При наличии источника возбудителя инфекции (больного или бактериовыделителя) дома, в стационаре к Исполнители:
мед. персонал больницы члены семьи больного больные и бактериовыделители
— Время проведения:
постоянно Заключительная
После удаления источника из очага госпитализация больного смерть больного выздоровление перепрофилирование инфекционного отделения
Исполнители:
мед. персонал отделений члены семьи больного работники дез. службы
Время проведения:
немедленно трибольничных инфекций примелекс мероприятий, направленных организмов. В медицинской практике антибиотики используются для лечения многих инфекционных заболеваний. Антагонизм может развиваться в форме конкуренции за источники питания. Если один микроорганизм использует другой организм как источник питания, то такой вид антагонизма называется паразитизмом. Примером паразитизма является отношение вирус — хозяин, бактериофаг — бактерии.
Температура
Одним из основных факторов, влияющих на жизнеспособность бактерий, является температура окружающей среды. Их существование происходит в определенном температурном диапазоне: минимальном, оптимальном и максимальном.
В зависимости от этого различные типы бактерий подразделяются на следующие три основные группы:
- Психофилы (от психроса — холодные) — холодолюбивые бактерии. Их оптимальная температура роста составляет от 10°С до 15°С, но может быть умножена на 0-30°С. Они обычно обитают в водах и почвах в Арктике и Антарктике и в потоках таяющих ледников. В морях Арктики обнаружены бактериальные виды, которые размножаются при -5°С. Некоторые патогенные бактерии, такие как Listeria monocytogenes и Y. enterocolitica, являются жизнеспособными при 4°С, как это обычно бывает, в домашних холодильниках.
- Мезофилы — это бактерии, которые растут при умеренных температурах от 20 до 40°С. Их максимальный температурный диапазон составляет 10-45°С. Большинство типов бактерий являются мезофильными и включают в себя некоторых почвенных и водных обитателей, нормальной микрофлоры и всех видов животных и бактерий, вызывающих заболевания.
- Термофилы определяются как теплокровные бактерии. Их оптимальная температура роста составляет от 45°С до 70°С, а их максимальный диапазон, при котором они остаются жизнеспособными, составляет 25-90°С. Термофилы обычно встречаются в термальных источниках и компосте. Молочнокислые бактерии также относятся к термофилам.
Существуют также гипертермофильные бактерии, которые развиваются при очень высоких температурах. Их оптимальная температура роста составляет от 70 до 110°С. Они включают представителей Археи, которые находятся вблизи гидротермальных отверстий на больших глубинах в океанах.
Оптимальная температура развития для данного типа бактерий соответствует условиям, в которых клеточный метаболизм наиболее эффективен. Высокие температуры, которые превышают максимум для данного типа бактерий, повреждают метаболизм клеток, и они умирают. Большая часть патогенных бактерий, грибов и всех вирусов погибает при 50-60°С в течение от нескольких минут до 1 часа. Споры бацилл являются наиболее устойчивыми формами жизни и умирают со скоростью. более 100°С в течение 2 часов и более (C. butulinum — более 5 часов). Высокая температура воды или водяного пара повреждает микроорганизмы путем коагуляции и денатурации белков (особенно чувствительных ферментов), денатурации ДНК и нарушения целостности клеток. В сухой стерилизации, где высокая температура влияет на микроорганизмы в воздухе, микробы умирают из-за окисления органического вещества в ячейке и из-за повышенного уровня электролита.
Низкие температуры также влияют на жизнедеятельность бактерий, замедляя или останавливая клеточный метаболизм, увеличивая вязкость (плотность) цитоплазмы и ограничивая проницаемость плазматической мембраны. В большинстве бактерий ниже 0°С метаболическая активность клеток прекращается и переходит в состояние анаболизма. Замораживание большинства микроорганизмов в подходящей среде и при температурах от -20 до -70°С, а также в жидком азоте (-196°С) сохраняется в течение длительного периода времени. Это делается в специализированных лабораториях с целью сохранения ценных видов бактерий.
Влияние температуры окружающей среды на микроорганизмы обычно используется в медицинской практике. Биологические материалы, которые принимаются для микробиологического тестирования, хранятся и транспортируются при оптимальной температуре для подозреваемого патогена, бактериальная культура также требует поддержания подходящей температуры. Влажное тепло широко используется для стерилизации медицинских инструментов и термостойких расходных материалов.
Химические факторы
Концентрация ионов водорода. Большое влияние на развитие микроорганизмов оказывает такой химический фактор внешней среды, как концентрация ионов водорода или pH. Каждый микроорганизм имеет свой максимум и минимум pH, в пределах которых он может развиваться (табл. 1.4).
Как свидетельствуют данные таблицы, есть и некоторые общие закономерности. Бактериальные микроорганизмы хорошо развиваются при pH, близком к нейтральному — от 6,5 до 7,5. У микроскопических грибов и различных видов дрожжей оптимум pH в кислой зоне — от 4 до 6. Концентрация водородных ионов в среде оказывает большое влияние на развитие микроорганизмов и на их физиологическую активность. Это положение можно подтвердить ходом процесса брожения. Например, при спиртовом брожении, протекающем при pH 4, образуются диоксид углерода и этиловый спирт. При сдвиге pH в щелочную сторону (до 7,5) брожение также происходит, но в этом случае кроме диоксида углерода и спирта образуется еще и уксусная кислота.
Окислительно-восстановительный потенциал. Выражают через rH2. Если pH выражает степень кислотности и щелочности, то rH2 — степень аэробности. И. Л. Работнова (1958) показала, что в водном растворе, насыщенном кислородом, rH2 = 41, а в условиях насыщения водородом — rH2 = 0. Шкала от 0 до 41 характеризует любую степень аэробности. По отношению к этому фактору внешней среды все микроорганизмы подразделяются на следующие основные группы: аэробы, анаэробы и факультативные анаэробы. Аэробы содержат в своих клетках систему дыхательных ферментов и в качестве акцепторов водорода при окислительно-восстановительных процессах используют молекулярный кислород. Для аэробных микроорганизмов, например для дрожжей, rH2= 10 / 30 (рис. 1.7, а). Анаэробы получают энергию без участия кислорода воздуха за счет сопряженного окисления — восстановления веществ субстрата. Эти микроорганизмы жизнедеятельны при rH2 не выше 20. Рис. 1.7, б свидетельствует, что размножаются анаэробы только при крайне низких значениях rH2 — не выше 3-5. Для представителей этой группы микроорганизмов молекулярный кислород не только не нужен, но в ряде случаев и ядовит.
Микроорганизмы, для которых кислород не обязателен, так как они живут за счет сопряженного окисления-восстановления без вовлечения кислорода, называются факультативными анаэробами. Они живут в широком диапазоне rH2 — от 0 до 30. Кислород для них не ядовит или слабо ядовит.